One-Class Adversarial Nets for Fraud Detection
نویسندگان
چکیده
Many online applications, such as online social networks or knowledge bases, are often attacked bymalicious users who commit different types of actions such as vandalism on Wikipedia or fraudulent reviews on eBay. Currently, most of the fraud detection approaches require a training dataset that contains records of both benign and malicious users. However, in practice, there are often no or very few records of malicious users. In this paper, we develop one-class adversarial nets (OCAN) for fraud detection using training data with only benign users. OCAN first uses LSTM-Autoencoder to learn the representations of benign users from their sequences of online activities. It then detects malicious users by training a discriminator with a complementary GANmodel that is different from the regular GAN model. Experimental results show that our OCAN outperforms the state-of-the-art one-class classification models and achieves comparable performance with the latest multi-source LSTM model that requires both benign and malicious users in the training phase.
منابع مشابه
FDiBC: A Novel Fraud Detection Method in Bank Club based on Sliding Time and Scores Window
One of the recent strategies for increasing the customer’s loyalty in banking industry is the use of customers’ club system. In this system, customers receive scores on the basis of financial and club activities they are performing, and due to the achieved points, they get credits from the bank. In addition, by the advent of new technologies, fraud is growing in banking domain as well. Therefor...
متن کاملGenerative Adversarial Nets with Labeled Data by Activation Maximization
In this paper, we study the impact and role of multi-class labels on adversarial training for generative adversarial nets (GANs). Our derivation of the gradient shows that the current GAN model with labeled data still results in undesirable properties due to the overlay of the gradients from multiple classes. We thus argue that a better gradient should follow the intensity and direction that ma...
متن کاملImportance Weighted Adversarial Nets for Partial Domain Adaptation
This paper proposes an importance weighted adversarial nets-based method for unsupervised domain adaptation, specific for partial domain adaptation where the target domain has less number of classes compared to the source domain. Previous domain adaptation methods generally assume the identical label spaces, such that reducing the distribution divergence leads to feasible knowledge transfer. Ho...
متن کاملMEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...
متن کاملFast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies
Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018